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Abstract: There is currently much research in natural language processing focusing on lexical networks. Most of them,
in particular the most famous, WordNet, lack syntagmatic information and especially thematic information
(“Tennis Problem”). This article describes conceptual vectors that allows the representation of ideas in any
textual segment and offers a continuous vision of related thematics, based on the distances between these the-
matics. We show the characteristics of conceptual vectors and explain how they complement lexico-semantic
networks. We illustrate this purpose by adding conceptual vectors to WordNet by emergence.

Originally resulting from Ross Quillian’s work on
psycholinguistics (Quillian, 1968), lexical networks
are today the subject of much research in Natural
Language Processing. They are employed in many
tasks (lexical disambiguation (Mihalcea et al., 2004))
or field applications (machine translation with mul-
tilingual networks like Papillon (Mangeot-Lerebours
et al., 2003) or (Knight & Luk, 1994), information
retrieval or text classification (Harabagiu & Chai,
1998)). Most of these networks, including the most
famous, WordNet (Fellbaum, 1988), lack syntagmatic
information and, in particular, information concern-
ing the domain usage of terms or at least thematically
related terms. There is thus no direct relation between
terms like ↪teacher↩-↪student↩ or ↪boat↩-↪port↩. This phe-
nomenon is called the “Tennis Problem” [(Fellbaum,
1988), p. 10]: ↪ball↩, ↪racket↩ and ↪court↩ is located at
different regions of the hierarchy, and there is no easy
way to navigate from one of these terms to the other.

For several years, the TAL team (Natural Lan-
guage Processing team) from LIRMM (Montpellier
Laboratory of Computer Science, Robotics, and Mi-
croelectronics) has worked on a formalization of the
projection of the linguistic concept of semantic fields
in a vector space, namely conceptual vectors. They
are used to represent ideas contained in an unspeci-
fied textual segment and offers a continuous vision of
the related thematics, based on the the finite distances

between them.
In this article, we present the conceptual vec-

tor model and especially the version built through
emergence. We show their characteristics and how
they complement lexico-semantic networks. We illus-
trate our purpose with an experiment done at UTMK
(Computer-Aided Translation Unit), Universiti Sains
Malaysia, Penang to enrich the WordNet data by con-
ceptual vectors built through emergence.

1 WordNet, an Example
Lexico-semantic Network

1.1 Principle

WordNet is a lexical database for English developed
under the direction of George Armitage Miller by
the Cognitive Science Laboratory of the university of
Princeton (New Jersey, USA). It aims to be consistent
with the access to the human mental lexicon.

WordNet is organized in sets of synonyms called
synsets. Each synset corresponds to a concept. The
meaning of a term is described in WordNet by three
methods:

• their definition



• the synset to which the meaning is attached.

• the lexical relations which link synsets. There
are, among others, hyperonymy, meronymy and
antonymy.

WordNet 2.0 contains 152059 terms what consti-
tutes a relatively broad coverage of the English lan-
guage. In early versions of WordNet, the lexical rela-
tions connect only items in the same part-of-speech.
There are thus one hierarchy for nouns, one for adjec-
tives, one for verbs and finally one for the adverbs.

1.2 Weakness of WordNet

In (Harabagiu et al., 1999), the authors of WordNet
(then at version 1.6) recorded six weaknesses in their
network construction:

1. the lack of connections between noun and verb hi-
erarchies;

2. limited number of connections between topically-
related words;

3. the lack of morphological relations;

4. the absence of thematic relations and selectional
restrictions;

5. some concepts (word senses) and relations are
missing;

6. lack of uniformity and consistency in the defini-
tions due to manually-written glosses.

We are interested in items 1, 2 and 4 (constituting
the tennis problem) in this article, and will show how
conceptual vectors can contribute to resolve them.

1.3 Previous Work on the Tennis
Problem

In this article, we will be interested only in WordNet
version 2.1 which was the latest available when we
carried out our experiments. A new version (3.0) was
released in December 2006 but it does not seem to
have improvements compared to the previous version
for what interests us here.

Since version 2.0, relations such as derivationally
related form makes it possible to link adjectives to
verbs or adjectives to nouns. In the same way, a usage
domain can be applied to synsets. However, the num-
ber of such data still seem too restricted to be suffi-
ciently relevant. Typical relations as ↪teacher↩-↪student↩
↪boat↩-↪port↩ or ↪doctor↩-↪hospital↩, often essential in lex-
ical disambiguation, are still absent and the limited
number of thematic indications like domain does not
make it possible to compensate this defect. Several

solutions were proposed to solve whole or part of this
problem.

With Extended WordNet, (Harabagiu et al., 1999)
proposed to disambiguate definitions of WordNet in
a semi-automatic way. The idea is to perform sense-
tagging on the words in the gloss text of each synset.
One can then compare two synsets and evaluate their
similarity. We will describe how we use this infor-
mation to manufacture the conceptual vectors in this
experiment.

Other researchers chose to add extra information
to the synsets. For example, (Agirre et al., 2001)
added lexical signatures resulting from tagged cor-
pora or Web documents.

On the other hand, others sought rather to increase
the number of existing arcs between synsets. (Steven-
son, 2002), for example, combined different metrics
to create links between synsets from their definitions
and a thesaurus. (Ferret & Zock, 2006) used a co-
occurrence network to extract typical relations like
those presented in the previous section.

We can see that all these proposals introduce dis-
crete information (“hard” links). Our proposal is to
introduce a continuous representation of related the-
matic information into the lexical network using con-
ceptual vectors.

2 Conceptual Vectors

2.1 Principle and Thematic Distance

We represent thematic aspects of textual segments
(documents, paragraph, phrases, etc) with conceptual
vectors. Vectors have long been used in informa-
tion retrieval (Salton & McGill, 1983) and for mean-
ing representation in the LSI model (Deerwester et
al., 1990) from latent semantic analysis (LSA) stud-
ies in psycholinguistics. In computational linguistics,
(Chauché, 1990) proposed a formalism for the projec-
tion of the linguistic notion of semantic field in a vec-
torial space, from which our model is inspired. From
a set of elementary concepts, it is possible to build
vectors (conceptual vectors) and to associate them to
any linguistic object. This vector approach is based
on known mathematical properties. It is thus possi-
ble to apply well-founded formal manipulations asso-
ciated to reasonable linguistic interpretations. Con-
cepts are defined from a thesaurus. In a prototype
applied to French, we used the Larousse thesaurus
(Larousse, 1992) where 873 concepts are identified,
to compare with the thousand defined in the Roget
thesaurus (Kirkpatrick, 1987). Let C be a finite set



of n concepts, a conceptual vector V is a linear com-
bination of elements ci of C . For a meaning A, a
vector V (A) is the description (in extension) of ac-
tivations of all concepts of C . For example, the dif-
ferent meanings of ↪door↩ could be projected on the
following concepts (the CONCEPTdintensityc are ordered
by decreasing values of intensity): V(↪door↩) = (OPEN-

INGd0.8c, BARRIERd0.7c, LIMITd0.65c, PROXIMITYd0.6c, EX-

TERIORd0.4c, INTERIORd0.39c, . . .

2.2 Operations on Vectors

2.2.1 Angular Distance

Comparison between conceptual vectors is done us-
ing angular distance. For two conceptual vectors A
and B,

Sim(X ,Y ) = cos(X̂ ,Y ) = X ·Y
‖X‖×‖Y‖

DA(A,B) = arccos(Sim(A,B))
(1)

Intuitively, this function constitutes an evaluation
of the thematic proximity and measures the angle be-
tween the two vectors. We would generally consider
that, for a distance DA(A,B):

• if ≤ π

4 (45°), A and B are thematically close and
share many concepts;

• if DA(A,B) ≥ π

4 , the thematic proximity between
A and B would be considered as loose;

• around π

2 , they are not related.

DA is a real distance function. It has the properties
of reflexivity, symmetry and triangular inequality. We
have, for example, the following angles (values are in
radian and degrees).

DA(V(↪tit↩), V(↪tit↩))=0 (0°)
DA(V(↪tit↩), V(↪bird↩))=0.55 (31°)
DA(V(↪tit↩), V(↪sparrow↩))=0.35 (20°)
DA(V(↪tit↩), V(↪train↩))=1.28 (73°)
DA(V(↪tit↩), V(↪insect↩))=0.57 (32°)

The first one has a straightforward interpretation,
as a ↪tit↩ cannot be closer to anything else than itself.
The second and the third are not very surprising since
a ↪tit↩ is a kind of ↪sparrow↩ which is a kind of ↪bird↩. A
↪tit↩ has not much in common with a ↪train↩, which ex-
plains the large angle between them. One may wonder
why ↪tit↩ and ↪insect↩ are rather close with only 32° be-
tween them. If we scrutinise the definition of ↪tit↩ from
which its vector is computed (Insectivourous passer-
ine bird with colorful feather) perhaps the interpreta-
tion of these values would seem clearer. In effect, the
thematic proximity is by no way an ontological or is-a
distance.

2.3 Neighbourhood: a Continuous
Vision of Thematic Aspects

2.3.1 Principle

The thematic neighbourhood function V is the func-
tion which returns the n closest LEXICAL OBJECTS1

to a lexical object x according to the angular distance:

σ× IN → σk :
X ,k → E = V (DA,X ,k) (2)

where F is the set of evaluation lexical functions
and σ the set of LEXICAL OBJECTS. The function V
is defined by :∣∣V (DA,Z,k)

∣∣ = k
∀X ∈ V (DA,Z,k), ∀Y /∈ V (DA,Z,k),
DA(X, Y)≤ DA(Y, Z)

(3)

The thematic neighborhood function can be used
for a learning process to check the overall relevance of
the semantic base or to find a more appropriate word
to use for a statement. Thus, they give new tools to
access words through a proximity notion to those de-
scribed in (Zock, 2002) and issued from psycholin-
guistic considerations like form and part-of-speech.
They also allow navigation of a huge associate net-
work in a continuous way instead of a discrete way as
is commonly done in semantic networks.

2.3.2 Examples

For example, we can have :
V (DA, ↪life↩, 7)=(↪life↩ 0.4) (↪to born↩ 0.449) (↪alive↩

0.467) (↪to live↩ 0.471) (↪existence↩ 0.471) (↪mind↩
0.484) (↪to live↩ 0.486)

V (DA, ↪death↩, 7)=(↪death↩ 0) (↪murdered↩ 0.367)
(↪killer↩ 0.377) (↪age of life↩ 0.481) (↪tyrannicide↩ 0.516)
(↪to kill↩ 0.579) (↪dead↩ 0.582)

2.3.3 Vectorial Sum

If X and Y are two vectors, their normalised vectorial
sum V is defined as :

ϑ
2 → ϑ : V = X ⊕Y | Vi =

Xi +Yi

‖X +Y‖
(4)

where ϑ is the set of the conceptual vectors, Vi
(resp. Xi, Yi) is the i-th component of the vector V
(resp. X , Y ).

1We define LEXICAL OBJECT to be any object in the lex-
icon which meaning can be described. For WordNet, they
are the unique strings (called in this article lexical items)
and synsets.



The normalized vectorial sum of two vectors gives
a vector bisecting the angle between the two operand
vectors. It is in fact an average of the operand vectors.
As an operation on the conceptual vectors, one can
thus see the normalized vectorial sum as the union of
the ideas contained in the terms.

2.3.4 Normalised Term to Term Product

If X and Y are two vectors, their normalised term to
term product V is defined as :

ϑ
2 → ϑ : V = X ⊗Y | vi =

√
xiyi (5)

The ⊗ operator can be interpreted as an operator
of intersection between vectors. If the intersection be-
tween two vectors is the null vector, then they do not
have anything in common. From the point of view
of the conceptual vectors, this operation thus makes
it possible to select the ideas common to the terms
involved.

2.4 Construction of Vectors by
Emergence

The emergence approach does not use any thesaurus,
nor does it use base concept vectors as was done in
(insert ref?). Only d, the vector size, is fixed a pri-
ori. The construction method of the vectors is iden-
tical to the traditional model with the difference that
if one of the vectors needed to compute the sum is
non-existent, because it has yet to be computed, then
this vector is drawn randomly. The computing pro-
cess is reiterated until convergence of each vector is
achieved.

As (Lafourcade, 2006) showed in more detail,
there are certain advantages to using this model. The
first of them is to be able to freely choose the quantity
of resources which one wishes to use by choosing the
size of the vectors in a suitable way. To give an idea
of the importance of this choice, a base of 500000
vectors of dimension 1000 is approximately 2GB, of
dimension 2000, 4GB, and so on. As it would not
be then reasonable nor easy to define a concept set of
the chosen size, it is easier to seek an approach which
enable us to avoid this necessity. Moreover, what ini-
tially seems like a makeshift or at least a compromise
proves to be an advantage because the lexical density
in the space of the words calculated by emergence is
much more consistent than in a space where concepts
are pre-defined. Indeed, the resources (dimensions of
space) tends to be harmoniously distributed according
to the lexical richness (number of terms).

3 Hybrid Modeling of Meaning:
Conceptual Vectors and Lexical
Networks

3.1 Contribution of Lexical Networks to
Conceptual Vectors

As shown in (Besançon, 2001), distances computed
on vectors are influenced by shared components
and/or distinct components. Angular distance is a
good tool for our aims because of its mathematical
characteristics; its simplicity to be understood and
to be linguistically interpreted; and its effectiveness
for computational processes. Whatever the type of
the chosen distance used for such of vectors (repre-
senting ideas instead of term occurences), the lower
the distance is, the closer the lexical objects are in
the same semantic field (called isotopy by Rastier
(Rastier, 1985)).

In the framework of semantic analysis as the one
which interests us, we use angular distance to ben-
efit from mutual information carried by conceptual
vectors to perform lexical disambiguation on words
whose meanings are in close semantic fields. Thus,
“Zidane scored a goal.” can be disambiguated thanks
to common ideas about sport while “The lawyer
pleads at the court.” can be disambiguated thanks
to those of justice. Furthermore, for prepositional at-
tachments, vectors will help in analysing “He saw the
girl with the telescope.” to attach “with a telescope”
to the verb “saw” due to ideas about vision.

On the contrary, conceptual vectors cannot be
used to disambiguate terms which are in different se-
mantic fields. We can even note that an analysis only
based on them can lead to misinterpretation. For ex-
ample, the French noun ↪avocat↩ has two meanings.
It is the equivalent of ↪lawyer↩ and the equivalent of
↪avocado↩. In the French sentence “L’avocat a mangé
un fruit.”, “The lawyer has eaten a fruit”, ↪to eat↩ and
↪fruit↩ both carry the idea of ↪food↩. The acception
computed by conceptual vectors for ↪avocat↩ would
then be ↪avocado↩. It would have been necessary that
the knowledge “a lawyer is a human” and “a human
eats” be identified, something that is not possible with
only conceptual vectors. Alone, they are not suffi-
cient to exploit lexical functions instanciations in the
texts. This is where lexical network can contribute
to correct these shortcomings. These limitations were
demonstracted in experiments for semantic analysis
using ant algorithms in (Lafourcade, 2006).



3.2 Contribution of Conceptual Vectors
to Lexical Networks

While lexical networks offer unquestionable preci-
sion, their recall is poor. It is difficult to represent all
possible relations between all terms. Indeed, how can
we represent the fact that two terms are in the same
semantic field? They may be absent from the network
because they are not connected by “traditional” arcs.
Introducing arcs of the type “semantic field” is also
problematic for us because of two reasons implicated
by the fuzzy and flexible of this relation:

• the first one is related to the database creator’s un-
derstanding on this relation: when are two synsets
considered to be in the same semantic field? In an
unfavourable case there would be very few arcs,
while in the extreme opposite case we could have
a combinative explosion in the number of arcs;

• the second and more fundamental problem is re-
lated to the representation itself. How could a
fuzzy relation, the essence of which is a contin-
uous field, be represented with discrete elements?

Thus, the continuous domain offered by concep-
tual vectors gives flexibilities that the discrete domain
offered by the networks cannot. They are able to
bring closer words which share ideas, including less
common ones. A network, on the other hand, can-
not do so, however common the ideas are. The con-
ceptual vectors and the operation of thematic distance
can correct the weak recall inherent of the lexical net-
works. This, then, is why conceptual vectors and lex-
ical networks are complementary tools to each other:
the defects of one are mitigated by qualities of the
other.

4 Experience on WordNet: Usage of
Data

4.1 Use of Definitions

EXtended WordNet (Mihalcea & Moldovan, 2001) is a
project carried out by Southern Methodist University
of Dallas (Texas, USA) with two aims:

• to disambiguate terms used in the definitions of
the synsets i.e. to indicate other synsets invoked
in the definition of a synset;

• to transform these definitions into a logical form,
allowing easier computations.

These data were built semi-automatically using
information from the network. For example, if the

genus of the definition (following Aristotelian logic)
has a meaning which is also an hypernym of the de-
fined synset, it is taken that the meaning of the genus
is this hypernym. Other information, such as the
distances between definitions or domain information,
was also used. The data in EXtended WordNet are
partly verified manually and the rate of precision is
more than 90%.

For the conceptual vectors construction, we used
these data in their logical forms because they make it
possible to locate the most important elements of the
definition text, in particular the genus. Computation
is done thus on a constructed dependency tree. The
definition text was pre-processed to remove the met-
alanguage not easily exploitable for a thematic analy-
sis. To illustrate, we will use the logical form of the
definition of ↪ant↩ as an example.

ant : NN(x1) → social : JJ(x1) insect : NN(x1)
live : V B(e1,x1,x3) in : IN(e1,x2)
organized : JJ(x2) colony : NN(x2)

There are 3 sets : x1 = {social, insect}, x2 = {or-
ganised, colony} and e1 = {live}. e1 in live and in al-
lows us to organise the sets as a hierarchy (Figure 1).
The vector of each of these sets is calculated; they
then make up the vectorial sum of the item ↪ant↩. Sets
of type verbs (VB) and nouns (NN) are assumed to be
carrying most of the meaning and thus have weight 1
for their vectors, while those of the dependents (ad-
verbs, RB; adjectives, JJ) are assigned a weight of 1

2 .
The global vector is then computed by weighted vec-
torial sum of the various sets in the tree starting with
the leaf sets. This mode of calculation makes it possi-
ble to consider in a dominating way the genus on the
other terms of the definitions and in a more general
ways the heads on their syntactic dependent. Figure
1 shows this calculation. (x3 is the “null” predicate
here, therefore it does not appear in the figure.)

4.2 Use of Relations

The relations are used on two levels: (1) for the vector
construction, they build in a different method, com-
plementary to the approach using the definitions in a
synset; (2) to avoid phenomenon of regrouping of dis-
tinct sets.

4.2.1 Vector Construction

A conceptual vector is constructed for each node of
the lexical network by simple weighted normalised
sum of the vectors of the linked nodes. If N is a node
linked to k nodes N1 . . .Nk, the vector of N is

V (N) = p1V (N1)+ p2V (N2)+ . . .+ pkV (Nk) (6)



social:JJ

insect:NN

live:VB
e1

colony:NN

organised:JJ
x2

in:IN

V(x2) = V(colony) ⊕ 1/2 V(organised)

V(x1) = V(insect) ⊕ 1/2 V(social)

V(e1) = V(live)

⊕

⊕

Figure 1: Construction of a conceptual vector from a defi-
nition : example of ant

This approach naturally involves an agglomera-
tion of the vectors. It is thus necessary to increase
the contrast of one vector following its computation.
With this intention, one calculates the coefficient of
variation2 of V . If the coefficient of variation is not
around 10% of a (pre-computed) average value, the
vector undergoes a nonlinear operation of amplifica-
tion (exponentiation of each component followed by
normalisation). This is repeated until the coefficient
of variation falls in an acceptable range, which is pre-
determined based on the chosen vector dimension.

4.2.2 Regrouping of Distinct Sets

A last potential problem is that the vectors of two dis-
tinct sets (at the same time for the lexical network and
for thematic) of terms might occupy the same area in
the vectorial space. This may happen by accident, as
computation is done by activation and vectors are ran-
domly drawn up when needed. It is thus necessary to
“separate” the vectors that are near to each other, but
corresponds to very different parts of the lexical net-
work and thematic fields.

The phenomenon can be detected by examining
the neighbourhood of a conceptual vector. If among
the N first neighbors, the density of words with no
correlation with the target word is significant, then a
separation process must be undertaken.

This action of separation is analogous to plung-
ing the whole network into the field from which the
nodes needs to be pushed back. With an inpiration

2given by the formula EC(V )
µ(V ) , where EC(V ) = the stan-

dard deviation of the vector V and µ(V ) = the arithmetic
mean of the components of V .

from physics, a force of repulsion, 1/d2, is calcu-
lated iteratively between nodes. For a given node, one
can thus calculate a vector displacement which will
move it away from uncomfortably near nodes. Nodes
not brought closer by thematic neighbourhood (at the
time of the first phase of calculation cf. section 4.1)
but being close “accidentally” end thus end up sepa-
rating naturally.

5 Conclusion

In this article, we presented how conceptual vec-
tors can be built by emergence and their uses. We
showed how they can help to solve the “tennis prob-
lem” courtesy of their characteristics complementary
to the lexico-semantic networks, WordNet being the
most famous example in current research. Recall of
networks are usually weak and do not make it easy to
represent semantic fields. In contrast, conceptual vec-
tors handle semantic fields well, but are not sufficient
to represent relations like hyperonymy or meronymy.

Our proposal is to benefit from this complemen-
tary situation and enrich WordNet with conceptual
vectors, built from the definitions and relations avail-
able in WordNet. The method suggested here sub-
scribes to the notion of a continuous field contrary
to most methods in the literature, which uses discrete
features (addition of arcs for the relations, symbols
about the domain, etc).

We are aware that this method can only help to
solve part of the tennis problem. The conceptual
vectors certainly cannot represent non-thematic
collocational relations between lexical items. Such
relations are primarily thosed modelled by Igor
Mel’čuk with his syntagmatic lexical functions
(Mel’čuk et al., 1995), such as intensification (“great
fear”; Magn (↪fear↩) = ↪great↩)), centre (or core)
(“crux of the problem”; Centr (↪problem↩) = ↪crux↩)
or even the confirmator(“legitimate excuse”;
Ver (↪excuse↩) = ↪legitimate↩). As noted by (Ferret
& Zock, 2006), these relations belong to a family
which is probably compulsary to have in a lexical
base. We agree with this point of view. Some avenues
were explored in (Schwab, 2005) and continue to be
followed in our current work.
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